Projects per year
Abstract
The deviatoric stress-deviatoric strain relationship in soils is highly nonlinear, especially in the small strain range. However, the constitutive models which aim to replicate the small strain nonlinearity are often complex and rarely used in geotechnical engineering practice. The goal of this study is to offer a simple way for updating the existing constitutive models, widely used in geotechnical practice, to take into account the small strain shear modulus changes. The study uses an existing small strain relationship to derive a yield surface. When the yield surface is introduced to an existing soil model, it enhances the model with the nonlinear deviatoric stress-deviatoric strain relationship in the small strain range. The paper also gives an example of such a model enhancement by combining the new yield surface with the Modified Cam Clay constitutive model. The validation simulations of the undrained triaxial tests on London Clay and Ham River sand with the upgraded constitutive models replicate the experiments clearly better than the base models, without any changes to existing model parameters and the core source code associated with the base model.
Original language | English |
---|---|
Article number | 6016350 |
Number of pages | 11 |
Journal | Advances in Civil Engineering |
Volume | 2019 |
DOIs | |
Publication status | Published - 28 Apr 2019 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Enhancing Constitutive Models for Soils: Adding the Capability to Model Nonlinear Small Strain in Shear'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Progressive failure and post-failure modelling of slopes with Generalized Interpolation Material Point Method
Sołowski, W. (Principal investigator), Tran, Q. A. (Project Member), Lei, X. (Project Member) & Seyedan, S. (Project Member)
01/09/2015 → 31/08/2019
Project: Academy of Finland: Other research funding