Enhanced thermally aided memory performance using few-layer ReS 2 transistors

Natasha Goyal, David M.A. MacKenzie, Vishal Panchal, Himani Jawa, Olga Kazakova, Dirch Hjorth Petersen, Saurabh Lodha

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)
146 Downloads (Pure)

Abstract

Thermally varying hysteretic gate operation in few-layer ReS 2 and MoS 2 back gate field effect transistors (FETs) is studied and compared for memory applications. Clockwise hysteresis at room temperature and anti-clockwise hysteresis at higher temperature (373 K for ReS 2 and 400 K for MoS 2) are accompanied by step-like jumps in transfer curves for both forward and reverse voltage sweeps. Hence, a step-like conductance (STC) crossover hysteresis between the transfer curves for the two sweeps is observed at high temperature. Furthermore, memory parameters such as the RESET-to-WRITE window and READ window are defined and compared for clockwise hysteresis at low temperature and STC-type hysteresis at high temperature, showing better memory performance for ReS 2 FETs as compared to MoS 2 FETs. Smaller operating temperature and voltage along with larger READ and RESET-to-WRITE windows make ReS 2 FETs a better choice for thermally aided memory applications. Finally, temperature dependent Kelvin probe force microscopy measurements show decreasing (constant) surface potential with increasing temperature for ReS 2 (MoS 2). This indicates less effective intrinsic trapping at high temperature in ReS 2, leading to earlier occurrence of STC-type hysteresis in ReS 2 FETs as compared to MoS 2 FETs with increasing temperature.

Original languageEnglish
Article number052104
Number of pages5
JournalApplied Physics Letters
Volume116
Issue number5
DOIs
Publication statusPublished - 3 Feb 2020
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Enhanced thermally aided memory performance using few-layer ReS 2 transistors'. Together they form a unique fingerprint.

Cite this