Projects per year
Abstract
Engineering of the dipole and the symmetry of materials plays an important role in fundamental research and technical applications. Here, a novel morphological manipulation strategy to engineer the dipole orientation and symmetry of 2D layered materials by integrating them with 1D nanowires (NWs) is reported. This 2D InSe –1D AlGaAs NW heterostructure example shows that the in-plane dipole moments in InSe can be engineered in the mixed-dimensional heterostructure to significantly enhance linear and nonlinear optical responses (e.g., photoluminescence, Raman, and second harmonic generation) with an enhancement factor of up to ≈12. Further, the 1D NW can break the threefold rotational symmetry of 2D InSe, leading to a strong optical anisotropy of up to ≈65%. These results of engineering dipole orientation and symmetry breaking with the mixed-dimensional heterostructures open a new path for photonic and optoelectronic applications.
Original language | English |
---|---|
Article number | 2200082 |
Journal | Advanced Science |
Volume | 9 |
Issue number | 20 |
Early online date | 9 May 2022 |
DOIs | |
Publication status | Published - 15 Jul 2022 |
MoE publication type | A1 Journal article-refereed |
Keywords
- 2D materials
- dipole engineering
- mixed-dimensional heterostructures
- nanowires
- optical anisotropy
- symmetry breaking
Fingerprint
Dive into the research topics of 'Engineering the Dipole Orientation and Symmetry Breaking with Mixed-Dimensional Heterostructures'. Together they form a unique fingerprint.-
FEMTOCHIP: FEMTOSECOND LASER ON A CHIP
Sun, Z., Li, D., Liu, P., Turunen, M., Das, S., Mohsen, A., Liapis, A. & Atalaia Rosa, J.
01/03/2021 → 29/02/2024
Project: EU: Framework programmes funding
-
FAST: Ultrafast Data Production with Broadband Photodetectors for Active Hyperspectral Space Imaging
Sun, Z., Akkanen, S., Pajunpää, T., Cui, L., Nigmatulin, F. & Das, S.
01/01/2021 → 31/12/2023
Project: Academy of Finland: Other research funding
-
NOIMO: Novel optical isolators to continue Moore's law in photonics integration
01/09/2020 → 31/08/2024
Project: Academy of Finland: Other research funding