Electronic states in finite graphene nanoribbons: Effect of charging and defects

M. Ijäs, M. Ervasti, Christer Uppstu, P. Liljeroth, J. van der Lit, I. Swart, A. Harju

Research output: Contribution to journalArticleScientificpeer-review

37 Citations (Scopus)
483 Downloads (Pure)


We study the electronic structure of finite armchair graphene nanoribbons using density-functional theory and the Hubbard model, concentrating on the states localized at the zigzag termini. We show that the energy gaps between end-localized states are sensitive to doping, and that in doped systems, the gap between the end-localized states decreases exponentially as a function of the ribbon length. Doping also quenches the antiferromagnetic coupling between the end-localized states leading to a spin-split gap in neutral ribbons. By comparing dI/dV maps calculated using the many-body Hubbard model, its mean-field approximation and density-functional theory, we show that the use of a single-particle description is justified for graphene π states in case spin properties are not the main interest. Furthermore, we study the effect of structural defects in the ribbons on their electronic structure. Defects at one ribbon terminus do not significantly modify the electronic states localized at the intact end. This provides further evidence for the interpretation of a multipeak structure in a recent scanning tunneling spectroscopy (STS) experiment resulting from inelastic tunneling processes [van der Lit et al., Nat. Commun. 4, 2023 (2013)]. Finally, we show that the hydrogen termination at the flake edges leaves identifiable fingerprints on the positive bias side of STS measurements, thus possibly aiding the experimental identification of graphene structures.
Original languageEnglish
Article number075429
Pages (from-to)1-13
JournalPhysical Review B
Issue number7
Publication statusPublished - 2013
MoE publication typeA1 Journal article-refereed


  • defects
  • graphene
  • Hubbard model
  • localized states


Dive into the research topics of 'Electronic states in finite graphene nanoribbons: Effect of charging and defects'. Together they form a unique fingerprint.

Cite this