Electromagnetic simulation and microwave circuit approach of heat transport in superconducting qubits

Christoforus Dimas Satrya*, Andrew Guthrie, Ilari K. Mäkinen, Jukka P. Pekola

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

107 Downloads (Pure)

Abstract

The study of quantum heat transport in superconducting circuits is significant for further understanding the connection between quantum mechanics and thermodynamics, and for possible applications for quantum information. The first experimental realisations of devices demonstrating photonic heat transport mediated by a qubit have already been designed and measured. Motivated by the analysis of such experimental results, and for future experimental designs, we numerically evaluate the photonic heat transport of qubit-resonator devices in the linear circuit regime through electromagnetic simulations using Sonnet software, and compare with microwave circuit theory. We show that the method is a powerful tool to calculate heat transport and predict unwanted parasitic resonances and background.

Original languageEnglish
Article number015005
JournalJournal of Physics Communications
Volume7
Issue number1
DOIs
Publication statusPublished - 23 Feb 2023
MoE publication typeA1 Journal article-refereed

Keywords

  • electromagnetic simulation
  • photonic heat transport
  • quantum information
  • quantum thermodynamics
  • Sonnet
  • superconducting circuits
  • superconducting qubits

Fingerprint

Dive into the research topics of 'Electromagnetic simulation and microwave circuit approach of heat transport in superconducting qubits'. Together they form a unique fingerprint.

Cite this