TY - JOUR
T1 - Efficient strategy to alleviate the inhibitory effect of lignin-derived compounds for enhanced butanol production
AU - Survase, Shrikant A.
AU - Nimbalkar, Pranhita
AU - Jurgens, German
AU - Granström, Tom
AU - Chavan, Prakash
AU - Bankar, Sandip Balasaheb
PY - 2021/1/25
Y1 - 2021/1/25
N2 - In the present study, the effect of one of the most important lignin-derived inhibitors (lignosulfonate) was assessed. A technique to overcome the lignosulfonate inhibitory action in the acetone−butanol−ethanol (ABE) fermentation process is proposed here. Different lignosulfonates were primarily added in the fermentation medium to observe their mechanistic action on the ABE production profile. Augmenting lignosulfonate concentration (0.5 g L−1) resulted in a drastically reduced solvent titer (ABE ∼1.50 g L−1). Especially, low-molecular-weight linosulfonate (1 g L−1) severely affected the solvent production and completely ceased the fermentation process. Therefore, a strategic approach that triggers the key genes responsible for butanol production was explored. The experimental analysis revealed that soy meal addition could enhance Clostridium acetobutylicum survival in the presence of lignosulfonates (0.25−3 g L−1). Moreover, soy meal addition also enhanced butanol concentration over 1.5-fold as compared to the control experiment. The ABE production using wood hydrolysate also produced substantial solvent titer (ABE ∼11 g L−1) in the presence of soy meal (5 g L−1). The transcriptional analysis results showed that important genes in clostridial metabolic pathways were upregulated in the presence of soy meal addition during fermentation.
AB - In the present study, the effect of one of the most important lignin-derived inhibitors (lignosulfonate) was assessed. A technique to overcome the lignosulfonate inhibitory action in the acetone−butanol−ethanol (ABE) fermentation process is proposed here. Different lignosulfonates were primarily added in the fermentation medium to observe their mechanistic action on the ABE production profile. Augmenting lignosulfonate concentration (0.5 g L−1) resulted in a drastically reduced solvent titer (ABE ∼1.50 g L−1). Especially, low-molecular-weight linosulfonate (1 g L−1) severely affected the solvent production and completely ceased the fermentation process. Therefore, a strategic approach that triggers the key genes responsible for butanol production was explored. The experimental analysis revealed that soy meal addition could enhance Clostridium acetobutylicum survival in the presence of lignosulfonates (0.25−3 g L−1). Moreover, soy meal addition also enhanced butanol concentration over 1.5-fold as compared to the control experiment. The ABE production using wood hydrolysate also produced substantial solvent titer (ABE ∼11 g L−1) in the presence of soy meal (5 g L−1). The transcriptional analysis results showed that important genes in clostridial metabolic pathways were upregulated in the presence of soy meal addition during fermentation.
UR - http://www.scopus.com/inward/record.url?scp=85099135416&partnerID=8YFLogxK
U2 - 10.1021/acssuschemeng.0c06584
DO - 10.1021/acssuschemeng.0c06584
M3 - Article
AN - SCOPUS:85099135416
SN - 2168-0485
VL - 9
SP - 1172
EP - 1179
JO - ACS Sustainable Chemistry and Engineering
JF - ACS Sustainable Chemistry and Engineering
IS - 3
ER -