Effects of liquid surface tension on gas capillaries and capillary forces at superamphiphobic surfaces

Mimmi Eriksson, Per M. Claesson, Mikael Järn, Viveca Wallqvist, Mikko Tuominen, Michael Kappl, Hannu Teisala, Doris Vollmer, Joachim Schoelkopf, Patrick A.C. Gane, Jyrki M. Mäkelä, Agne Swerin

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
64 Downloads (Pure)

Abstract

The formation of a bridging gas capillary between superhydrophobic surfaces in water gives rise to strongly attractive interactions ranging up to several micrometers on separation. However, most liquids used in materials research are oil-based or contain surfactants. Superamphiphobic surfaces repel both water and low-surface-tension liquids. To control the interactions between a superamphiphobic surface and a particle, it needs to be resolved whether and how gas capillaries form in non-polar and low-surface-tension liquids. Such insight will aid advanced functional materials development. Here, we combine laser scanning confocal imaging and colloidal probe atomic force microscopy to elucidate the interaction between a superamphiphobic surface and a hydrophobic microparticle in three liquids with different surface tensions: water (73 mN m-1), ethylene glycol (48 mN m-1) and hexadecane (27 mN m-1). We show that bridging gas capillaries are formed in all three liquids. Force-distance curves between the superamphiphobic surface and the particle reveal strong attractive interactions, where the range and magnitude decrease with liquid surface tension. Comparison of free energy calculations based on the capillary menisci shapes and the force measurements suggest that under our dynamic measurements the gas pressure in the capillary is slightly below ambient.

Original languageEnglish
Article number6794
Number of pages13
JournalScientific Reports
Volume13
Issue number1
DOIs
Publication statusPublished - 26 Apr 2023
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Effects of liquid surface tension on gas capillaries and capillary forces at superamphiphobic surfaces'. Together they form a unique fingerprint.

Cite this