Effect of Operating Parameters on Efficiency of Swash-Plate Type Axial Piston Pump

Heikki Kauranne*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

16 Downloads (Pure)

Abstract

In an effort to improve the energy economics of hydraulic systems, attention should be paid to reducing power losses in two main entities, energy converting components, and energy controlling and conveying components. Achieving the former requires utilizing components’ most energy efficient operating range. The energy converting efficiency of a pump, which is the primary energy converter in a hydraulic system, is determined by several operational factors. Of these, only pressure and rotational speed are normally considered, but also the fluid temperature and derived capacity with variable displacement pumps have a major effect on the efficiency. Omitting these factors may lead to running the pump outside its most efficient operation range and cause high energy losses. Operating the pump in its optimal region calls, however, for detailed knowledge of its performance characteristics, which are not generally made public by the pump manufacturers. This study presents the performance measurement results of a variable displacement axial piston pump in the form of efficiencies as a function of pressure, rotational speed, derived capacity and inlet fluid temperature. The results show that all of these factors have a significant impact on pump’s energy conversion efficiency and should, therefore, be taken into account when operating a hydraulic pump.

Original languageEnglish
Article number4030
Pages (from-to)1-18
Number of pages18
JournalEnergies
Volume15
Issue number11
DOIs
Publication statusPublished - 1 Jun 2022
MoE publication typeA1 Journal article-refereed

Keywords

  • axial piston pump
  • efficiency
  • hydromechanical
  • operation point
  • operation range
  • swash-plate
  • variable displacement
  • volumetric

Fingerprint

Dive into the research topics of 'Effect of Operating Parameters on Efficiency of Swash-Plate Type Axial Piston Pump'. Together they form a unique fingerprint.

Cite this