Effect of fiber orientation on the shear behavior of glass fiber/epoxy composites

José Humberto S. Almeida*, Clarissa C. Angrizani, Edson C. Botelho, Sandro C. Amico

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

51 Citations (Scopus)

Abstract

This paper deals with the study of the influence of the lay-up configuration on interlaminar and in-plane shear properties of glass fiber reinforced epoxy composites. The following laminates were produced by resin transfer molding with vacuum assistance for this study: [0]5, [90]5, [0/90/0/90/0] and randomly oriented (mat). The composites, with similar overall fiber volume fraction, were evaluated based on four tests: double-notched shear, short beam shear, V-notched rail and Iosipescu shear tests. Besides, the dynamic shear modulus was measured with non-destructive testing based on free vibration method. The [0]5 laminate presented interlaminar shear strength almost twice that of [90]5, whereas the mat samples presented higher in-plane shear strength in both tests used due to its random fiber orientation. The dynamic shear modulus was higher for the composites [0]5, as expected due to the longitudinally oriented fibers. Among the shear test methods applied, double-notched and V-notched methods exhibited more auspicious features, possibly due to a more uniform shear stress state during testing.

Original languageEnglish
Pages (from-to)789-795
Number of pages7
JournalMaterials and Design
Volume65
DOIs
Publication statusPublished - 1 Jan 2015
MoE publication typeA1 Journal article-refereed

Keywords

  • Fabric
  • Failure mode
  • In-plane shear
  • Interlaminar shear
  • Laminate
  • Non-destructive testing

Fingerprint

Dive into the research topics of 'Effect of fiber orientation on the shear behavior of glass fiber/epoxy composites'. Together they form a unique fingerprint.

Cite this