Dynamics of hierarchical weighted networks of van der Pol oscillators

Daniel Monsivais-Velazquez, Kunal Bhattacharya, Rafael A. Barrio, Philip K. Maini, Kimmo K. Kaski*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

65 Downloads (Pure)

Abstract

We investigate the dynamics of regular fractal-like networks of hierarchically coupled van der Pol oscillators. The hierarchy is imposed in terms of the coupling strengths or link weights. We study the low frequency modes, as well as frequency and phase synchronization, in the network by a process of repeated coarse-graining of oscillator units. At any given stage of this process, we sum over the signals from the oscillator units of a clique to obtain a new oscillating unit. The frequencies and the phases for the coarse-grained oscillators are found to progressively synchronize with the number of coarse-graining steps. Furthermore, the characteristic frequency is found to decrease and finally stabilize to a value that can be tuned via the parameters of the system. We compare our numerical results with those of an approximate analytic solution and find good qualitative agreement. Our study on this idealized model shows how oscillations with a precise frequency can be obtained in systems with heterogeneous couplings. It also demonstrates the effect of imposing a hierarchy in terms of link weights instead of one that is solely topological, where the connectivity between oscillators would be the determining factor, as is usually the case.

Original languageEnglish
Article number123146
Number of pages10
JournalCHAOS
Volume30
Issue number12
DOIs
Publication statusPublished - 1 Dec 2020
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Dynamics of hierarchical weighted networks of van der Pol oscillators'. Together they form a unique fingerprint.

Cite this