Distribution and curing reactions of melamine formaldehyde resin in cells of impregnation-modified wood

Michael Altgen, Muhammad Awais, Daniela Altgen, André Klüppel, Mikko Mäkelä, Lauri Rautkari

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Wood modification improves the properties of wood as a building material by altering the wood structure on a cellular level. This study investigated how dimensional changes of wood on a macroscopic scale are related to the cellular level chemical changes on the micron level after impregnation modification with melamine formaldehyde (MF) resin under different heat curing conditions. Our results showed that the curing conditions affected the polycondensation reactions and the morphological structure of the MF resin within the cell lumen. The diffusion of the resin into the cell wall was estimated based on the triazine ring vibration of melamine in the Raman spectrum at 950–990 cm−1. Thereby, it was shown that macroscopic changes in wood dimensions do not provide a reliable estimate for the cell wall diffusion of the resin. The removal of cell wall constituents during the modification, which was facilitated by the alkaline pH of the impregnation solution, counterbalanced the cell wall bulking effect of the resin. This was particularly evident for wet cured samples, where diffusion of MF resin into the cell wall was observed by confocal Raman microscopy, despite a reduction in macroscopic wood dimensions.
Original languageEnglish
Article number3366
Number of pages10
JournalScientific Reports
Volume10
DOIs
Publication statusPublished - 2020
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Distribution and curing reactions of melamine formaldehyde resin in cells of impregnation-modified wood'. Together they form a unique fingerprint.

  • Projects

    Wood modification using pressurized hot water

    Rautkari, L., Jansson, E., Altgen, M., Hänninen, T., Kyyrö, S., Belt, T., Awais, M. & Hautamäki, S.

    01/09/201731/08/2021

    Project: Academy of Finland: Other research funding

    Equipment

  • Cite this