Distributed load management scheme to increase PV hosting capacity in LV feeders

Reza Mahroo-Bakhtiari, Milad Izadi, Amir Safdarian*, Matti Lehtonen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review


Proliferation of photovoltaic (PV) panels may cause voltage increases in low voltage (LV) distribution feeders. This issue confines PV hosting capacity of the feeders. To overcome this issue and enable higher PV hosting capacity, a model to manage the operation cycles of the domestic electric water heater and heating, ventilation, and air conditioning loads in order to avoid the voltage rise, thereby increasing PV hosting capacity in LV feeders is presented in this study. The model respects users' thermal comfort by setting the associated temperatures within allowed ranges. To preserve customers' privacy, the presented model is then decomposed into a master problem and several sub-problems using the Dantzig-Wolfe decomposition algorithm. Thereafter, an effective scheme is designed to solve the decomposed problem in a distributed fashion. In the scheme, the master problem is solved by the system-wide module and the sub-problems are solved by house-wide modules. The problems are all in linear format which can be easily solved with affordable computation. Importantly, the proposed model can reach the optimal solution while minimal data is shared between houses and control centre.

Original languageEnglish
Pages (from-to)125-133
Number of pages9
Issue number1
Publication statusPublished - 6 Jan 2020
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Distributed load management scheme to increase PV hosting capacity in LV feeders'. Together they form a unique fingerprint.

  • Cite this