Discovering and synthesizing humanoid climbing movements

Research output: Contribution to journalArticleScientificpeer-review


Research units


This paper addresses the problem of offline path and movement planning for wall climbing humanoid agents. We focus on simulating bouldering, i.e. climbing short routes with diverse moves, although we also demonstrate our system on a longer wall. Our approach combines a graph-based highlevel path planner with low-level sampling-based optimization of climbing moves. Although the planning problem is complex, our system produces plausible solutions to bouldering problems (short climbing routes) in less than a minute. We further utilize a k-shortest paths approach, which enables the system to discover alternative paths - in climbing, alternative strategies often exist, and what might be optimal for one climber could be impossible for others due to individual differences in strength, flexibility, and reach. We envision our system could be used, e.g. in learning a climbing strategy, or as a test and evaluation tool for climbing route designers. To the best of our knowledge, this is the first paper to solve and simulate rich humanoid wall climbing, where more than one limb can move at the same time, and limbs can also hang free for balance or use wall friction in addition to predefned holds.


Original languageEnglish
Article number43
Pages (from-to)1-11
JournalACM Transactions on Graphics
Issue number4
Publication statusPublished - 2017
MoE publication typeA1 Journal article-refereed

    Research areas

  • A prune, Climbing motion synthesis, Dynamic graph, K shortest-paths on graph, Rapidly exploring random trees

ID: 15877081