Abstract
This paper proposes a deep neural network for estimating the directions of arrival (DOA) of multiple sound sources. The proposed stacked convolutional and recurrent neural network (DOAnet) generates a spatial pseudo-spectrum (SPS) along with the DOA estimates in both azimuth and elevation. We avoid any explicit feature extraction step by using the magnitudes and phases of the spectrograms of all the channels as input to the network. The proposed DOAnet is evaluated by estimating the DOAs of multiple concurrently present sources in anechoic, matched and unmatched reverberant conditions. The results show that the proposed DOAnet is capable of estimating the number of sources and their respective DOAs with good precision and generate SPS with high signal-to-noise ratio.
Original language | English |
---|---|
Title of host publication | 2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) |
Publisher | IEEE |
Pages | 1462-1466 |
Number of pages | 5 |
Volume | 2018-September |
ISBN (Print) | 978-90-827970-1-5 |
DOIs | |
Publication status | Published - 2018 |
MoE publication type | A4 Conference publication |
Event | European Signal Processing Conference - Rome, Italy Duration: 3 Sept 2018 → 7 Sept 2018 Conference number: 26 |
Publication series
Name | European Signal Processing Conference |
---|---|
Publisher | IEEE |
ISSN (Print) | 2076-1465 |
ISSN (Electronic) | 2076-1465 |
Conference
Conference | European Signal Processing Conference |
---|---|
Abbreviated title | EUSIPCO |
Country/Territory | Italy |
City | Rome |
Period | 03/09/2018 → 07/09/2018 |