Abstract
How does neural connectivity in autistic children differ from neural connectivity in healthy children or autistic youths? What patterns in global trade networks are shared across classes of goods, and how do these patterns change over time? Answering questions like these requires us to differentially describe groups of graphs: Given a set of graphs and a partition of these graphs into groups, discover what graphs in one group have in common, how they systematically differ from graphs in other groups, and how multiple groups of graphs are related. We refer to this task as graph group analysis, which seeks to describe similarities and differences between graph groups by means of statistically significant subgraphs. To perform graph group analysis, we introduce GRAGRA, which uses maximum entropy modeling to identify a non-redundant set of subgraphs with statistically significant associations to one or more graph groups. Through an extensive set of experiments on a wide range of synthetic and real-world graph groups, we confirm that GRAGRA works well in practice.
Original language | English |
---|---|
Title of host publication | AAAI-22 Technical Tracks 4 |
Publisher | Association for the Advancement of Artificial Intelligence |
Pages | 3959-3967 |
Number of pages | 9 |
ISBN (Electronic) | 1577358767, 9781577358763 |
DOIs | |
Publication status | Published - 30 Jun 2022 |
MoE publication type | A4 Conference publication |
Event | AAAI Conference on Artificial Intelligence - virtual conference, Virtual, Online Duration: 22 Feb 2022 → 1 Mar 2022 Conference number: 36 https://aaai.org/Conferences/AAAI-22/ |
Publication series
Name | Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022 |
---|---|
Volume | 36 |
Conference
Conference | AAAI Conference on Artificial Intelligence |
---|---|
Abbreviated title | AAAI |
City | Virtual, Online |
Period | 22/02/2022 → 01/03/2022 |
Internet address |