Abstract
This paper addresses the challenge of dense pixel correspondence estimation between two images. This problem is closely related to optical flow estimation task where ConvNets (CNNs) have recently achieved significant progress. While optical flow methods produce very accurate results for the small pixel translation and limited appearance variation scenarios, they hardly deal with the strong geometric transformations that we consider in this work. In this paper, we propose a coarse-to-fine CNN-based framework that can leverage the advantages of optical flow approaches and extend them to the case of large transformations providing dense and subpixel accurate estimates. It is trained on synthetic transformations and demonstrates very good performance to unseen, realistic, data. Further, we apply our method to the problem of relative camera pose estimation and demonstrate that the model outperforms existing dense approaches.
Original language | English |
---|---|
Title of host publication | Proceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019 |
Publisher | IEEE |
Pages | 1034-1042 |
Number of pages | 9 |
ISBN (Electronic) | 9781728119755 |
DOIs | |
Publication status | Published - 4 Mar 2019 |
MoE publication type | A4 Conference publication |
Event | IEEE Winter Conference on Applications of Computer Vision - Waikoloa Village, United States Duration: 7 Jan 2019 → 11 Jan 2019 Conference number: 19 |
Publication series
Name | IEEE Winter Conference on Applications of Computer Vision |
---|---|
Publisher | IEEE |
ISSN (Print) | 2472-6737 |
Conference
Conference | IEEE Winter Conference on Applications of Computer Vision |
---|---|
Abbreviated title | WACV |
Country/Territory | United States |
City | Waikoloa Village |
Period | 07/01/2019 → 11/01/2019 |