Determining wash loss levels in the brownstock pulp washing line using different methods

Research output: Contribution to journalArticleScientificpeer-review

Researchers

Research units

  • South Eastern Finland University of Applied Sciences

Abstract

The purpose of brownstock pulp washing is to recover the maximum amount of dissolved inorganic and organic material using a minimal amount of water. Brownstock washing is a notable subprocess in chemical pulping because it has effects on the subsequent treatments of the pulp and is also the first step in the chemical recovery cycle. Without effective washing, the economic viability of chemical pulp production is affected. The performance of washing can be described in two main ways: using wash loss, which describes the amount of washable compounds in the pulp suspension that could have been removed in washing; or the dilution factor, which represents the net amount of water that is added during washing. The amount of sodium in the pulp suspension after washing has typically been used as an indicator of wash loss, usually expressed as kg sodium sulfate/ovendry ton of washed pulp. Other common measurement methods are conductivity, chemical oxygen demand (COD), total organic carbon (TOC), dissolved dry solids (DDS), and lignin concentration. Scandinavian pulp mill softwood and hardwood fiber lines were investigated using various measurement methods in the pulp phases to gain better understanding of wash loss. The concentration of DDS in the streams was measured using a refractometer and laboratory scale. The pH, conductivity, lignin content, TOC, and COD were measured to look for any correlations. Using different methods, the level differences remain constant, but it is difficult to control the washing process with sufficient precision using individual measurements. The measurement methods must also be continuous and reliable to be used to monitor and control washing.

Details

Original languageEnglish
Pages (from-to)253-259
Number of pages7
JournalTAPPI Journal
Volume16
Issue number5
Publication statusPublished - May 2017
MoE publication typeA1 Journal article-refereed

    Research areas

  • SOFTWOOD KRAFT PULP

ID: 15240259