Designing High Interfacial Conduction beyond Bulk via Engineering the Semiconductor-Ionic Heterostructure CeO2-δ/BaZr0.8Y0.2O3for Superior Proton Conductive Fuel Cell and Water Electrolysis Applications

Yueming Xing, Bin Zhu, Liang Hong, Chen Xia, Baoyuan Wang, Yan Wu, Hongdong Cai, Sajid Rauf, Jianbing Huang, Muhammad Imran Asghar, Yang Yang, Wen Feng Lin

Research output: Contribution to journalArticleScientificpeer-review

13 Citations (Scopus)
70 Downloads (Pure)

Abstract

Proton ceramic fuel cells (PCFCs) are an emerging clean energy technology; however, a key challenge persists in improving the electrolyte proton conductivity, e.g., around 10-3-10-2S cm-1at 600 °C for the well-known BaZr0.8Y0.2O3(BZY), that is far below the required 0.1 S cm-1. Herein, we report an approach for tuning BZY from low bulk to high interfacial conduction by introducing a semiconductor CeO2-δforming a semiconductor-ionic heterostructure CeO2-δ/BZY. The interfacial conduction was identified by a significantly higher conductivity obtained from the BZY grain boundary than that of the bulk and a further improvement from the CeO2-δ/BZY which achieved a remarkably high proton conductivity of 0.23 S cm-1. This enabled a high peak power of 845 mW cm-2at 520 °C from a PCFC using the CeO2-δ/BZY as the electrolyte, in strong contrast to the BZY bulk conduction electrolyte with only 229 mW cm-2. Furthermore, the CeO2-δ/BZY fuel cell was operated under water electrolysis mode, exhibiting a very high current density output of 3.2 A cm-2corresponding to a high H2production rate, under 2.0 V at 520 °C. The band structure and a built-in-field-assisted proton transport mechanism have been proposed and explained. This work demonstrates an efficient way of tuning the electrolyte from low bulk to high interfacial proton conduction to attain sufficient conductivity required for PCFCs, electrolyzers, and other advanced electrochemical energy technologies.

Original languageEnglish
Pages (from-to)15373-15384
Number of pages12
JournalACS Applied Energy Materials
Volume5
Issue number12
DOIs
Publication statusPublished - 26 Dec 2022
MoE publication typeA1 Journal article-refereed

Keywords

  • ceramic proton-conducting electrolyte
  • interface engineering
  • proton ceramic fuel cells
  • semiconductor-ionic heterostructure
  • solid oxide water electrolysis cell

Fingerprint

Dive into the research topics of 'Designing High Interfacial Conduction beyond Bulk via Engineering the Semiconductor-Ionic Heterostructure CeO2-δ/BaZr0.8Y0.2O3for Superior Proton Conductive Fuel Cell and Water Electrolysis Applications'. Together they form a unique fingerprint.

Cite this