Design optimization of permanent magnet clutch with Ārtap framework

Ekaterina Andriushchenko*, Jan Kaska, Ants Kallaste, Anouar Belahcen, Toomas Vaimann, Anton Rassõlkin

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

8 Downloads (Pure)

Abstract

So far, Permanent Magnet (PM) clutches have been broadly used as torque transmission devices. With the aim of effective utilization of materials and energy in the manufacturing of PM clutches, design optimization has been widely applied. Generally, PM clutches are optimized applying linear dimensions as optimization parameters. On the contrary, optimization of PM clutch shapes has not been done extensively. Therefore, this paper performs optimization of PM clutch shapes with the following objectives: maximum tangential attraction force and minimum volume of utilized materials. To form optimal shapes, the points on the clutch surface are chosen as optimization parameters. The optimization is carried out using Ārtap framework in connection with COMSOL software, where the 3D model of the clutch has been created. After the optimization, the tangential attraction force has increased by 13 % and the volume of the clutch has been reduced by 24 %. Although the obtained shapes appear to be highly intricate, it does not pose an obstacle for modern manufacturing techniques.

Original languageEnglish
Pages (from-to)106-112
Number of pages7
JournalPeriodica Polytechnica: Electrical Engineering and Computer Science
Volume65
Issue number2
DOIs
Publication statusPublished - 27 Apr 2021
MoE publication typeA1 Journal article-refereed

Keywords

  • ?rtap framework
  • additive manufacturing
  • electromagnetic coupling
  • NSGA-II
  • optimization

Fingerprint

Dive into the research topics of 'Design optimization of permanent magnet clutch with Ārtap framework'. Together they form a unique fingerprint.

Cite this