Design and Synthesis of Self-Healable Superhydrophobic Coatings for Oil/Water Separation

Biyun Wang, Yanling Ma, Hanqing Ge, Jing Luo, Bo Peng, Ziwei Deng*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)

Abstract

The introduction of the self-healing function into superhydrophobic surfaces has recently raised increasing attention because it can renew the feature of the surface iteratively to a large extent to extend the service life span of the surface in practical applications. However, it still faces a great challenge on how to achieve this unique surface with a tunable self-healing function via an easy and effective way. Here, we propose a general, yet easily implemented strategy to endow a diversity of commercial substrates with self-healable superhydrophobic surfaces mainly relying on the collective use of the polydopamine (PDA) chemistry with a hydrophobic silane-octadecyltrimethoxysilane (ODTMS). Upon applying ultrasonication for 30 min to an alkaline aqueous solution comprising dopamine hydrochloride (DA) and ODTMS, ODTMS disperses into the aqueous phase as microdroplets, while DA polymerizes into PDA exclusively onto the micro-sized oil droplets, forming capsules with nanoroughness. In the presence of substrates, PDA also anchors these composite capsules onto substrates, resulting in hierarchical surfaces. ODTMS is detected abundantly on the hierarchical surfaces, leading to superhydrophobic surfaces. Remarkably, this superhydrophobicity is self-restorable at room temperature (e.g., days) once it is deteriorated by the air plasma or extremely acid/alkali treatment, and this self-restoration can be significantly accelerated via the heating (2 h) or rubbing (5 min) treatment. Generally, heating and rubbing are the valid ways to induce self-healing, which is speculated to accelerate the migration of hidden ODTMS from the capsules to the surfaces because of the minimization of the global surface-free energy. Benefiting from the self-healing superhydrophobicity, we devise oil/water separation using various surface-modified commercial fabrics, which exhibit a prolonged life span in applications and may further facilitate other usage in environmental remediation and water purification.

Original languageEnglish
Pages (from-to)15309-15318
Number of pages10
JournalLangmuir
Volume36
Issue number50
Early online date2021
DOIs
Publication statusPublished - 2021
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Design and Synthesis of Self-Healable Superhydrophobic Coatings for Oil/Water Separation'. Together they form a unique fingerprint.

Cite this