Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

J. S. Hummelshoj*, D. D. Landis, J. Voss, Tao Jiang, A. Tekin, Nicolai Bork, M. Dulak, J.J. Mortensen, L. Adamska, J. Andersin, J. D. Baran, G. D. Barmparis, F. Bell, A. L. Bezanilla, Jonas Björk, M. E. Bjorketun, F. Bleken, F. Buchter, M. Burkle, P. D. BurtonB. B. Buus, A. Calborean, F. Calle-Vallejo, S. Casolo, B. D. Chandler, D. H. Chi, I. Czekaj, S. Datta, A. Datye, A. DeLaRiva, V. Despoja, S. Dobrin, M. Engelund, L. Ferrighi, P. Frondelius, Q.J. Fu, A. Fuentes, Joachim A. Fürst, A. Garcia-Fuente, J. Gavnholt, R. Goeke, S. Gudmundsdottir, K. D. Hammond, H.A. Hansen, D. Hibbitts, E. Hobi, J. G. Howalt, S. L. Hruby, A. Huth, L. Isaeva, J. Jelic, I. J. T. Jensen, Katarzyna A. Kacprzak, A. Kelkkanen, D. Kelsey, D. S. Kesanakurthi, Jesper Kleis, P. J. Klupfel, I. Konstantinov, R. Korytar, P. Koskinen, C. Krishna, E. Kunkes, A.H. Larsen, J.M. Garcia-Lastra, H. Lin, O. Lopez-Acevedo, M. Mantega, J. I. Martinez, I. N. Mesa, D. J. Mowbray, J. S. G. Myrdal, Y. Natanzon, A. Nistor, T. Olsen, H. Park, L. S. Pedroza, V. Petzold, C. Plaisance, J. A. Rasmussen, H. Ren, M. Rizzi, A. S. Ronco, C. Rostgaard, S. Saadi, L. A. Salguero, E. J. G. Santos, A. L. Schoenhalz, Junyang Shen, M. Smedemand, O. J. Stausholm-Moller, M. Stibius, M. Strange, H. B. Su, B. Temel, A. Toftelund, V. Tripkovic, M. Vanin, Vimal K. Viswanathan, A. Vojvodic, S. Wang, J. Wellendorff, K.S. Thygesen, J. Rossmeisl, Thomas Bligaard, K.W. Jacobsen, J.K. Norskov, Tejs Vegge

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M(1)); and 1 alkali, alkaline earth or 3d/4d transition metal atom (M(2)) plus two to five (BH(4))(-) groups, i.e., M(1)M(2)(BH(4))(2-5), using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially stable alloys with promising decomposition energies. The M(1)(Al/Mn/Fe)(BH(4))(4), (Li/Na)Zn(BH(4))(3), and (Na/K)(Ni/Co)(BH(4))(3) alloys are found to be the most promising, followed by selected M(1)(Nb/Rh)(BH(4))(4) alloys.

Original languageEnglish
Article number014101
Pages (from-to)1-9
Number of pages9
JournalJournal of Chemical Physics
Volume131
Issue number1
DOIs
Publication statusPublished - 7 Jul 2009
MoE publication typeA1 Journal article-refereed

Keywords

  • ab initio calculations
  • aluminium alloys
  • boron alloys
  • cobalt alloys
  • decomposition
  • density functional theory
  • electronic structure
  • hydrogen
  • hydrogen storage
  • iron alloys
  • lithium alloys
  • manganese alloys
  • nickel alloys
  • niobium alloys
  • potassium alloys
  • rhodium alloys
  • sodium alloys
  • thermodynamics
  • zinc alloys
  • HYDROGEN-STORAGE
  • COMPLEX HYDRIDES
  • DECOMPOSITION
  • LIBH4
  • MG(BH4)(2)

Fingerprint

Dive into the research topics of 'Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project'. Together they form a unique fingerprint.

Cite this