Abstract
Suitable lateral connections between encoder and decoder are shown to allow higher layers of a denoising autoencoder (dAE) to focus on invariant representations. In regular autoencoders, detailed information needs to be carried through the highest layers but lateral connections from encoder to decoder relieve this pressure. It is shown that abstract invariant features can be translated to detailed reconstructions when invariant features are allowed to modulate the strength of the lateral connection. Three dAE structures with modulated and additive lateral connections, and without lateral connections were compared in experiments using real-world images. The experiments verify that adding modulated lateral connections to the model 1) improves the accuracy of the probability model for inputs, as measured by denoising performance; 2) results in representations whose degree of invariance grows faster towards the higher layers; and 3) supports the formation of diverse invariant poolings.
Original language | English |
---|---|
Publication status | Published - 1 Jan 2015 |
MoE publication type | Not Eligible |
Event | International Conference on Learning Representations - San Diego, United States Duration: 7 May 2015 → 9 May 2015 Conference number: 3 |
Conference
Conference | International Conference on Learning Representations |
---|---|
Abbreviated title | ICLR |
Country/Territory | United States |
City | San Diego |
Period | 07/05/2015 → 09/05/2015 |