Projects per year
Abstract
It has been shown that rendering in the gradient domain, i.e., estimating finite difference gradients of image intensity using correlated samples, and combining them with direct estimates of pixel intensities by solving a screened Poisson problem, often offers fundamental benefits over merely sampling pixel intensities. The reasons can be traced to the frequency content of the light transport integrand and its interplay with the gradient operator. However, while they often yield state of the art performance among algorithms that are based on Monte Carlo sampling alone, gradient-domain rendering algorithms have, until now, not generally been competitive with techniques that combine Monte Carlo sampling with post-hoc noise removal using sophisticated non-linear filtering.
Drawing on the power of modern convolutional neural networks, we propose a novel reconstruction method for gradient-domain rendering. Our technique replaces the screened Poisson solver of previous gradient-domain techniques with a novel dense variant of the U-Net autoencoder, additionally taking auxiliary feature buffers as inputs. We optimize our network to minimize a perceptual image distance metric calibrated to the human visual system. Our results significantly improve the quality obtained from gradient-domain path tracing, allowing it to overtake state-of-the-art comparison techniques that denoise traditional Monte Carlo samplings. In particular, we observe that the correlated gradient samples - that offer information about the smoothness of the integrand unavailable in standard Monte Carlo sampling - notably improve image quality compared to an equally powerful neural model that does not make use of gradient samples.
Original language | English |
---|---|
Article number | 126 |
Number of pages | 12 |
Journal | ACM Transactions on Graphics |
Volume | 38 |
Issue number | 4 |
DOIs | |
Publication status | Published - Jul 2019 |
MoE publication type | A1 Journal article-refereed |
Keywords
- gradient-domain rendering
- gradient-domain reconstruction
- screened poisson
- ray tracing
Fingerprint
Dive into the research topics of 'Deep Convolutional Reconstruction For Gradient-Domain Rendering'. Together they form a unique fingerprint.Datasets
-
Pre-rendered training and testing dataset for the paper Deep Convolutional Reconstruction for Gradient-Domain Rendering
Kettunen, M. (Creator), Härkönen, E. (Creator) & Lehtinen, J. (Creator), Zenodo, 20 Dec 2019
Dataset
Projects
- 1 Finished
-
Robust Unbiased Image Synthesis
Lehtinen, J. (Principal investigator), Silvennoinen, A. (Project Member), Kettunen, M. (Project Member) & Aittala, M. (Project Member)
01/09/2014 → 31/08/2018
Project: Academy of Finland: Other research funding