TY - GEN
T1 - DEEP-CARVING
T2 - IEEE Conference on Computer Vision and Pattern Recognition
AU - Shankar, Sukrit
AU - Garg, Vikas K.
AU - Cipolla, Roberto
PY - 2015/10/14
Y1 - 2015/10/14
N2 - Most of the approaches for discovering visual attributes in images demand significant supervision, which is cumbersome to obtain. In this paper, we aim to discover visual attributes in a weakly supervised setting that is commonly encountered with contemporary image search engines. For instance, given a noun (say forest) and its associated attributes (say dense, sunlit, autumn), search engines can now generate many valid images for any attribute-noun pair (dense forests, autumn forests, etc). However, images for an attributenoun pair do not contain any information about other attributes (like which forests in the autumn are dense too). Thus, a weakly supervised scenario occurs: each of the M attributes corresponds to a class such that a training image in class m ε {1, . . . ,M} contains a single label that indicates the presence of the mth attribute only. The task is to discover all the attributes present in a test image. Deep Convolutional Neural Networks (CNNs) [20] have enjoyed remarkable success in vision applications recently. However, in a weakly supervised scenario, widely used CNN training procedures do not learn a robust model for predicting multiple attribute labels simultaneously. The primary reason is that the attributes highly co-occur within the training data, and unlike objects, do not generally exist as well-defined spatial boundaries within the image. To ameliorate this limitation, we propose Deep-Carving, a novel training procedure with CNNs, that helps the net efficiently carve itself for the task of multiple attribute prediction. During training, the responses of the feature maps are exploited in an ingenious way to provide the net with multiple pseudo-labels (for training images) for subsequent iterations. The process is repeated periodically after a fixed number of iterations, and enables the net carve itself iteratively for efficiently disentangling features. Additionally, we contribute a noun-adjective pairing inspired Natural Scenes Attributes Dataset to the research community, CAMIT - NSAD, containing a number of co-occurring attributes within a noun category. We describe, in detail, salient aspects of this dataset. Our experiments on CAMITNSAD and the SUN Attributes Dataset [29], with weak supervision, clearly demonstrate that the Deep-Carved CNNs consistently achieve considerable improvement in the precision of attribute prediction over popular baseline methods.
AB - Most of the approaches for discovering visual attributes in images demand significant supervision, which is cumbersome to obtain. In this paper, we aim to discover visual attributes in a weakly supervised setting that is commonly encountered with contemporary image search engines. For instance, given a noun (say forest) and its associated attributes (say dense, sunlit, autumn), search engines can now generate many valid images for any attribute-noun pair (dense forests, autumn forests, etc). However, images for an attributenoun pair do not contain any information about other attributes (like which forests in the autumn are dense too). Thus, a weakly supervised scenario occurs: each of the M attributes corresponds to a class such that a training image in class m ε {1, . . . ,M} contains a single label that indicates the presence of the mth attribute only. The task is to discover all the attributes present in a test image. Deep Convolutional Neural Networks (CNNs) [20] have enjoyed remarkable success in vision applications recently. However, in a weakly supervised scenario, widely used CNN training procedures do not learn a robust model for predicting multiple attribute labels simultaneously. The primary reason is that the attributes highly co-occur within the training data, and unlike objects, do not generally exist as well-defined spatial boundaries within the image. To ameliorate this limitation, we propose Deep-Carving, a novel training procedure with CNNs, that helps the net efficiently carve itself for the task of multiple attribute prediction. During training, the responses of the feature maps are exploited in an ingenious way to provide the net with multiple pseudo-labels (for training images) for subsequent iterations. The process is repeated periodically after a fixed number of iterations, and enables the net carve itself iteratively for efficiently disentangling features. Additionally, we contribute a noun-adjective pairing inspired Natural Scenes Attributes Dataset to the research community, CAMIT - NSAD, containing a number of co-occurring attributes within a noun category. We describe, in detail, salient aspects of this dataset. Our experiments on CAMITNSAD and the SUN Attributes Dataset [29], with weak supervision, clearly demonstrate that the Deep-Carved CNNs consistently achieve considerable improvement in the precision of attribute prediction over popular baseline methods.
UR - http://www.scopus.com/inward/record.url?scp=84959219836&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2015.7298962
DO - 10.1109/CVPR.2015.7298962
M3 - Conference article in proceedings
AN - SCOPUS:84959219836
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 3403
EP - 3412
BT - IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
PB - IEEE
Y2 - 7 June 2015 through 12 June 2015
ER -