Projects per year
Abstract
Approximate Bayesian inference estimates descriptors of an intractable target distribution - in essence, an optimization problem within a family of distributions. For example, Langevin dynamics (LD) extracts asymptotically exact samples from a diffusion process because the time evolution of its marginal distributions constitutes a curve that minimizes the KL-divergence via steepest descent in the Wasserstein space. Parallel to LD, Stein variational gradient descent (SVGD) similarly minimizes the KL, albeit endowed with a novel Stein-Wasserstein distance, by deterministically transporting a set of particle samples, thus de-randomizes the stochastic diffusion process. We propose de-randomized kernel-based particle samplers to all diffusion-based samplers known as MCMC dynamics. Following previous work in interpreting MCMC dynamics, we equip the Stein-Wasserstein space with a fiber-Riemannian Poisson structure, with the capacity of characterizing a fiber-gradient Hamiltonian flow that simulates MCMC dynamics. Such dynamics discretizes into generalized SVGD (GSVGD), a Stein-type deterministic particle sampler, with particle updates coinciding with applying the diffusion Stein operator to a kernel function. We demonstrate empirically that GSVGD can de-randomize complex MCMC dynamics, which combine the advantages of auxiliary momentum variables and Riemannian structure, while maintaining the high sample quality from an interacting particle system.
Original language | English |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021 |
Publisher | Neural Information Processing Systems Foundation |
Pages | 17507-17517 |
Number of pages | 11 |
ISBN (Electronic) | 9781713845393 |
Publication status | Published - 2021 |
MoE publication type | A4 Conference publication |
Event | Conference on Neural Information Processing Systems - Virtual, Online Duration: 6 Dec 2021 → 14 Dec 2021 Conference number: 35 https://neurips.cc |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Publisher | Neural Information Processing Systems Foundation |
Volume | 21 |
ISSN (Print) | 1049-5258 |
Conference
Conference | Conference on Neural Information Processing Systems |
---|---|
Abbreviated title | NeurIPS |
City | Virtual, Online |
Period | 06/12/2021 → 14/12/2021 |
Internet address |
Fingerprint
Dive into the research topics of 'De-randomizing MCMC dynamics with the diffusion Stein operator'. Together they form a unique fingerprint.-
Heinonen Markus AT-palkka: Deep learning with differential equations
Heinonen, M. (Principal investigator)
01/09/2020 → 31/08/2025
Project: Academy of Finland: Other research funding
-
Interactive machine learning from multiple biodata sources
Kaski, S. (Principal investigator), Hämäläinen, A. (Project Member), Gadd, C. (Project Member), Hegde, P. (Project Member), Shen, Z. (Project Member), Siren, J. (Project Member), Trinh, T. (Project Member), Jain, A. (Project Member) & Jälkö, J. (Project Member)
01/01/2019 → 31/08/2021
Project: Academy of Finland: Other research funding
-
-: Finnish Center for Artificial Intelligence
Kaski, S. (Principal investigator)
01/01/2019 → 31/12/2022
Project: Academy of Finland: Other research funding