Projects per year
Abstract
The strict latency constraints of emerging vehicular applications make it unfeasible to forward sensing data from vehicles to the cloud for processing. To shorten network latency, vehicular fog computing (VFC) moves computation to the edge of the Internet, with the extension to support the mobility of distributed computing entities (a.k.a fog nodes). In other words, VFC proposes to complement stationary fog nodes co-located with cellular base stations with mobile ones carried by moving vehicles (e.g., buses). Previous works on VFC mainly focus on optimizing the assignments of computing tasks among available fog nodes. However, capacity planning, which decides where and how much computing resources to deploy, remains an open and challenging issue. The complexity of this problem results from the spatio-temporal dynamics of vehicular traffic, varying computing resource demand generated by vehicular applications, and the mobility of fog nodes. To solve the above challenges, we propose a data-driven capacity planning framework that optimizes the deployment of stationary and mobile fog nodes to minimize the installation and operational costs under the quality-of-service constraints, taking into account the spatio-temporal variation in both demand and supply. Using real-world traffic data and application profiles, we analyze the cost efficiency potential of VFC in the long term. We also evaluate the impacts of traffic patterns on the capacity plans and the potential cost savings. We find that high traffic density and significant hourly variation would lead to dense deployment of mobile fog nodes and create more savings in operational costs in the long term.
Original language | English |
---|---|
Pages (from-to) | 13179-13194 |
Number of pages | 16 |
Journal | IEEE Internet of Things Journal |
Volume | 9 |
Issue number | 15 |
Early online date | 2022 |
DOIs | |
Publication status | Published - 1 Aug 2022 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Data-driven Capacity Planning for Vehicular Fog Computing'. Together they form a unique fingerprint.Projects
- 2 Finished
-
DataFog: A Data-Driven Platform for Capacity and Resource Management in Vehicular Fog Computing
Xiao, Y., Zhanabatyrova, A., Cho, B., Li, X., Mao, W., Akgul, Ö., Noreikis, M. & Zhu, C.
01/01/2019 → 31/12/2022
Project: Academy of Finland: Other research funding
-
PriMO-5G: Virtual Presence in Moving Objects through 5G
Jäntti, R., Ruttik, K., Sheikh, M., Menta, E., Malm, N., Meles, M., Saba, N., Lassila, P. & Mutafungwa, E.
01/07/2018 → 30/06/2021
Project: EU: Framework programmes funding