Abstract
This paper deals with discrete-time models and current control methods for synchronous motors with a magnetically anisotropic rotor structure, such as interior permanent-magnet synchronous motors (IPMSMs) and synchronous reluctance motors (SyRMs). Dynamic performance of current controllers based on continuous-time models is limited, especially if the ratio of the sampling frequency to the fundamental frequency is low. An exact closed-form hold-equivalent discrete motor model is derived. The zero-order hold of the stator-voltage input is modeled in stationary coordinates, where it physically is. An analytical discrete-time pole-placement design method for a two-degree-of-freedom state-space current controller with an integral action is proposed. The proposed method is easy to apply: only the desired closed-loop bandwidth and the three motor parameters (Rs, Ld, Lq) are required. The robustness of the proposed current control design against parameter errors is analyzed. The controller is experimentally verified using a 6.7-kW SyRM drive.
Original language | English |
---|---|
Title of host publication | IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) |
Place of Publication | Torino, Italy |
Pages | 156-164 |
ISBN (Electronic) | 978-1-4799-8899-0 |
DOIs | |
Publication status | Published - 26 Mar 2015 |
MoE publication type | A4 Conference publication |
Keywords
- current control
- delay
- discrete-time model
- interior permanent-magnet synchronous motor (IPMSM)
- synchronous reluctance motor (SyRM)
- zero-order hold