Current control for IPMSM drives: direct discrete-time pole-placement design

Marko Hinkkanen, Zengcai Qu, Hafiz A.A. Awan, Toni Tuovinen, Fernando Briz

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

7 Citations (Scopus)
48 Downloads (Pure)


This paper deals with discrete-time models and current control methods for synchronous motors with a magnetically anisotropic rotor structure, such as interior permanent-magnet synchronous motors (IPMSMs) and synchronous reluctance motors (SyRMs). Dynamic performance of current controllers based on continuous-time models is limited, especially if the ratio of the sampling frequency to the fundamental frequency is low. An exact closed-form hold-equivalent discrete motor model is derived. The zero-order hold of the stator-voltage input is modeled in stationary coordinates, where it physically is. An analytical discrete-time pole-placement design method for a two-degree-of-freedom state-space current controller with an integral action is proposed. The proposed method is easy to apply: only the desired closed-loop bandwidth and the three motor parameters (Rs, Ld, Lq) are required. The robustness of the proposed current control design against parameter errors is analyzed. The controller is experimentally verified using a 6.7-kW SyRM drive.
Original languageEnglish
Title of host publicationIEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)
Place of PublicationTorino, Italy
ISBN (Electronic)978-1-4799-8899-0
Publication statusPublished - 26 Mar 2015
MoE publication typeA4 Article in a conference publication


  • current control
  • delay
  • discrete-time model
  • interior permanent-magnet synchronous motor (IPMSM)
  • synchronous reluctance motor (SyRM)
  • zero-order hold


Dive into the research topics of 'Current control for IPMSM drives: direct discrete-time pole-placement design'. Together they form a unique fingerprint.

Cite this