Crystallization and cocrystallization in supramolecular comb copolymer-like systems: blends of poly(4-vinylpyridine) and pentadecylphenol

M. C. Luyten*, G.O.R. Alberda van Ekenstein, G. ten Brinke, J. Ruokolainen, O. Ikkala, M. Torkkeli, R. Serimaa

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

74 Citations (Scopus)

Abstract

The solid state of comb copolymer-like systems obtained by blending poly(4-vinylpyridine) with pentadecylphenol was studied by a combination of techniques. Depending on the amount of pentadecylphenol, several regimes are present. For 0.5 ≤ x ≤ 1.0 (x is the ratio between the number of phenol and pyridine groups) the alkyl tails form an interdigitated hexagonally packed crystalline layer. Small-angle X-ray scattering measurements show that for x = 1.5 and 2.0 the excess pentadecylphenol cocrystallizes with the associated pentadecylphenol, with the free phenol groups probably aggregating near the middle of the crystalline layer. For x ≥ 2.0 the orthorhombic crystal modification also appears. Finally for x ≥ 3.0, part of the excess pentadecylphenol macrophase separates on crystallization, forming an additional phase of pure pentadecylphenol with the familiar orthorhombic packing. These findings are similar to results obtained for real comb copolymer systems, i.e., containing covalently bonded side chains. However, our systems are essentially different due to the dynamic hydrogen-bonding equilibrium, which implies that the equilibrium solid state may always involve some form of macrophase separation.

Original languageEnglish
Pages (from-to)4404-4410
Number of pages7
JournalMacromolecules
Volume32
Issue number13
DOIs
Publication statusPublished - 1999
MoE publication typeA1 Journal article-refereed

Keywords

  • biologically inspired materials
  • functional materials
  • nanostructures
  • polymers
  • self-organization
  • supramolecular structures

Fingerprint

Dive into the research topics of 'Crystallization and cocrystallization in supramolecular comb copolymer-like systems: blends of poly(4-vinylpyridine) and pentadecylphenol'. Together they form a unique fingerprint.

Cite this