Projects per year
Abstract
We prove that in the scaling limit, the crossing probabilities of multiple interfaces in the critical planar Ising model with alternating boundary conditions are conformally invariant expressions given by the pure partition functions of multiple SLEκ with κ=3. In particular, this identifies the scaling limits with ratios of specific correlation functions of conformal field theory.
Original language | English |
---|---|
Pages (from-to) | 3169-3206 |
Number of pages | 38 |
Journal | Annals of Applied Probability |
Volume | 33 |
Issue number | 4 |
DOIs | |
Publication status | Published - Aug 2023 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Crossing probabilities of multiple Ising interfaces'. Together they form a unique fingerprint.-
Peltola Eveliina AT-palkka: Satunnaisgeometrian konformi-invarianssi
Peltola, E. (Principal investigator), Abuzaid, O. (Project Member) & Brummet, L. (Project Member)
01/09/2021 → 31/08/2026
Project: Academy of Finland: Other research funding
-
First Peltola: Finnish centre of excellence in Randomness and STructures
Peltola, E. (Principal investigator), Roussillon, J. (Project Member), Ryan, K. (Project Member) & Immonen, J. (Project Member)
01/01/2022 → 31/12/2024
Project: Academy of Finland: Other research funding