Creation of ordered 3D tubes out of DNA origami lattices

Johannes M. Parikka, Heini Järvinen, Karolina Sokołowska, Visa Ruokolainen, Nemanja Markešević, Ashwin K. Natarajan, Maija Vihinen-Ranta, Anton Kuzyk, Kosti Tapio*, J. Jussi Toppari*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

19 Downloads (Pure)

Abstract

Hierarchical self-assembly of nanostructures with addressable complexity has been a promising route for realizing novel functional materials. Traditionally, the fabrication of such structures on a large scale has been achievable using top-down methods but with the cost of complexity of the fabrication equipment versus resolution and limitation mainly to 2D structures. More recently bottom-up methods using molecules like DNA have gained attention due to the advantages of low fabrication costs, high resolution and simplicity in an extension of the methods to the third dimension. One of the more promising bottom-up techniques is DNA origami due to the robust self-assembly of arbitrarily shaped nanostructures with feature sizes down to a few nanometers. Here, we show that under specific ionic conditions of the buffer, the employed plus-shaped, blunt-ended Seeman tile (ST) origami forms elongated, ordered 2D lattices, which are further rolled into 3D tubes in solution. Imaging structures on a surface by atomic force microscopy reveals ribbon-like structures, with single or double layers of the origami lattice. Further studies of the double-layered structures in a liquid state by confocal microscopy and cryo-TEM revealed elongated tube structures with a relatively uniform width but with a varying length. Through meticulous study, we concluded that the assembly process of these 3D DNA origami tubes is heavily dependent on the concentration of both mono- and divalent cations. In particular, nickel seems to act as a trigger for the formation of the tubular assemblies in liquid.

Original languageEnglish
Pages (from-to)7772-7780
Number of pages9
JournalNanoscale
Volume15
Issue number17
DOIs
Publication statusPublished - 28 Mar 2023
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Creation of ordered 3D tubes out of DNA origami lattices'. Together they form a unique fingerprint.

Cite this