Creating nanoporous graphene with swift heavy ions

Research output: Contribution to journalArticleScientificpeer-review

Standard

Creating nanoporous graphene with swift heavy ions. / Vázquez, H.; Åhlgren, E. H.; Ochedowski, O.; Leino, A. A.; Mirzayev, R.; Kozubek, R.; Lebius, H.; Karlušic, M.; Jakšic, M.; Krasheninnikov, A. V.; Kotakoski, J.; Schleberger, M.; Nordlund, K.; Djurabekova, F.

In: Carbon, Vol. 114, 01.04.2017, p. 511-518.

Research output: Contribution to journalArticleScientificpeer-review

Harvard

Vázquez, H, Åhlgren, EH, Ochedowski, O, Leino, AA, Mirzayev, R, Kozubek, R, Lebius, H, Karlušic, M, Jakšic, M, Krasheninnikov, AV, Kotakoski, J, Schleberger, M, Nordlund, K & Djurabekova, F 2017, 'Creating nanoporous graphene with swift heavy ions' Carbon, vol. 114, pp. 511-518. https://doi.org/10.1016/j.carbon.2016.12.015

APA

Vázquez, H., Åhlgren, E. H., Ochedowski, O., Leino, A. A., Mirzayev, R., Kozubek, R., ... Djurabekova, F. (2017). Creating nanoporous graphene with swift heavy ions. Carbon, 114, 511-518. https://doi.org/10.1016/j.carbon.2016.12.015

Vancouver

Vázquez H, Åhlgren EH, Ochedowski O, Leino AA, Mirzayev R, Kozubek R et al. Creating nanoporous graphene with swift heavy ions. Carbon. 2017 Apr 1;114:511-518. https://doi.org/10.1016/j.carbon.2016.12.015

Author

Vázquez, H. ; Åhlgren, E. H. ; Ochedowski, O. ; Leino, A. A. ; Mirzayev, R. ; Kozubek, R. ; Lebius, H. ; Karlušic, M. ; Jakšic, M. ; Krasheninnikov, A. V. ; Kotakoski, J. ; Schleberger, M. ; Nordlund, K. ; Djurabekova, F. / Creating nanoporous graphene with swift heavy ions. In: Carbon. 2017 ; Vol. 114. pp. 511-518.

Bibtex - Download

@article{4550074afd264dd29a3c0780ced08020,
title = "Creating nanoporous graphene with swift heavy ions",
abstract = "We examine swift heavy ion-induced defect production in suspended single layer graphene using Raman spectroscopy and a two temperature molecular dynamics model that couples the ionic and electronic subsystems. We show that an increase in the electronic stopping power of the ion results in an increase in the size of the pore-type defects, with a defect formation threshold at 1.22–1.48 keV/layer. We also report calculations of the specific electronic heat capacity of graphene with different chemical potentials and discuss the electronic thermal conductivity of graphene at high electronic temperatures, suggesting a value in the range of 1 Wm−1 K−1. These results indicate that swift heavy ions can create nanopores in graphene, and that their size can be tuned between 1 and 4 nm diameter by choosing a suitable stopping power.",
author = "H. V{\'a}zquez and {\AA}hlgren, {E. H.} and O. Ochedowski and Leino, {A. A.} and R. Mirzayev and R. Kozubek and H. Lebius and M. Karlušic and M. Jakšic and Krasheninnikov, {A. V.} and J. Kotakoski and M. Schleberger and K. Nordlund and F. Djurabekova",
year = "2017",
month = "4",
day = "1",
doi = "10.1016/j.carbon.2016.12.015",
language = "English",
volume = "114",
pages = "511--518",
journal = "Carbon",
issn = "0008-6223",

}

RIS - Download

TY - JOUR

T1 - Creating nanoporous graphene with swift heavy ions

AU - Vázquez, H.

AU - Åhlgren, E. H.

AU - Ochedowski, O.

AU - Leino, A. A.

AU - Mirzayev, R.

AU - Kozubek, R.

AU - Lebius, H.

AU - Karlušic, M.

AU - Jakšic, M.

AU - Krasheninnikov, A. V.

AU - Kotakoski, J.

AU - Schleberger, M.

AU - Nordlund, K.

AU - Djurabekova, F.

PY - 2017/4/1

Y1 - 2017/4/1

N2 - We examine swift heavy ion-induced defect production in suspended single layer graphene using Raman spectroscopy and a two temperature molecular dynamics model that couples the ionic and electronic subsystems. We show that an increase in the electronic stopping power of the ion results in an increase in the size of the pore-type defects, with a defect formation threshold at 1.22–1.48 keV/layer. We also report calculations of the specific electronic heat capacity of graphene with different chemical potentials and discuss the electronic thermal conductivity of graphene at high electronic temperatures, suggesting a value in the range of 1 Wm−1 K−1. These results indicate that swift heavy ions can create nanopores in graphene, and that their size can be tuned between 1 and 4 nm diameter by choosing a suitable stopping power.

AB - We examine swift heavy ion-induced defect production in suspended single layer graphene using Raman spectroscopy and a two temperature molecular dynamics model that couples the ionic and electronic subsystems. We show that an increase in the electronic stopping power of the ion results in an increase in the size of the pore-type defects, with a defect formation threshold at 1.22–1.48 keV/layer. We also report calculations of the specific electronic heat capacity of graphene with different chemical potentials and discuss the electronic thermal conductivity of graphene at high electronic temperatures, suggesting a value in the range of 1 Wm−1 K−1. These results indicate that swift heavy ions can create nanopores in graphene, and that their size can be tuned between 1 and 4 nm diameter by choosing a suitable stopping power.

UR - http://www.scopus.com/inward/record.url?scp=85007162611&partnerID=8YFLogxK

U2 - 10.1016/j.carbon.2016.12.015

DO - 10.1016/j.carbon.2016.12.015

M3 - Article

VL - 114

SP - 511

EP - 518

JO - Carbon

JF - Carbon

SN - 0008-6223

ER -

ID: 10357431