Corrosion performance of some titanium-based hard coatings

Research output: Contribution to journalArticleScientificpeer-review

Researchers

Research units

  • VTT Technical Research Centre of Finland
  • Technische Universität Darmstadt
  • University of Hull

Abstract

Tools and machine parts which could benefit from wear-resistant titanium-based hard films are often subject to corrosive environments. Physically vapour-deposited coatings frequently exhibit porosity and even small defects, which can cause rapid local corrosion of the substrate material; there is therefore a requirement for dense and chemically inert coatings. This paper presents corrosion data for titanium-based hard coatings such as TiN, (Ti,Al)N, Ti(B, N) and TiB2 and also for multilayered structures where additional aluminium-based insulating surface layers (AlN and Al2O3) were deposited. The corrosion resistance and porosity of the films were analysed by electrochemical techniques. The degree of metallic bonding can play a significant role in influencing the corrosion resistance of refractory transition-metal-based ceramic coatings. Here we demonstrate that, under potentiodynamic corrosion test conditions, resistance to corrosive attack was relatively poor for TiB2, better for (Ti, Al)N and Ti(B, N) and best for TiN. It is also shown that applying the additional protective aluminium-based insulating surface layers on the coating can further improve corrosion resistance.

Details

Original languageEnglish
Pages (from-to)489-495
Number of pages7
JournalSurface and Coatings Technology
Volume49
Issue number1-3
Publication statusPublished - 10 Dec 1991
MoE publication typeA1 Journal article-refereed

ID: 4513033