Controlling anodization time to monitor film thickness, phase composition and crystal orientation during anodic growth of TiO2 nanotubes

Xuelan Hou*, Peter D. Lund, Yongdan Li

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

8 Citations (Scopus)
59 Downloads (Pure)

Abstract

Anodic TiO2 nanotube (TNT) films show promises for photon-driven catalytic, electricity storage and chemical processes. The film thickness of anodic TNT is known to affect its performance in optical and electronic applications. Also, factors affecting the morphology and dimensions of anodic TNT films are rather well-known. However, the knowledge on phase transition and composition in the growth of anodic TiO2 from the titanium metal is very limited. In this work, the anodization time is controlled in intervals of 10, 60, 300, 1000, 2000 and 5000 s to investigate its effect on phase composition and transition, and the morphology of the anodic TNT during the growth process. Even though the mechanism of anodic TNT formation is still under debate, the scanning electron microscope results support bottom-up tube growth with evidence of a compact layer. It was also found that the Richards growth model is applicable to correlate growth time and film thickness. Finally, the phase transition, crystal orientation and pore formation during the anodic process are further discussed.

Original languageEnglish
Article number107168
Number of pages6
JournalElectrochemistry Communications
Volume134
DOIs
Publication statusPublished - Jan 2022
MoE publication typeA1 Journal article-refereed

Keywords

  • Anodic oxidation
  • Growth curve
  • Phase transition and composition
  • Sigmoidal growth model
  • TiO nanotube arrays

Fingerprint

Dive into the research topics of 'Controlling anodization time to monitor film thickness, phase composition and crystal orientation during anodic growth of TiO2 nanotubes'. Together they form a unique fingerprint.

Cite this