Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography

N. Hyvönen, H. Majander*, S. Staboulis

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

7 Citations (Scopus)
70 Downloads (Pure)


Electrical impedance tomography aims at reconstructing the conductivity inside a physical body from boundary measurements of current and voltage at a finite number of contact electrodes. In many practical applications, the shape of the imaged object is subject to considerable uncertainties that render reconstructing the internal conductivity impossible if they are not taken into account. This work numerically demonstrates that one can compensate for inaccurate modeling of the object boundary in two spatial dimensions by finding compatible locations and sizes for the electrodes as a part of a reconstruction algorithm. The numerical studies, which are based on both simulated and experimental data, are complemented by proving that the employed complete electrode model is approximately conformally invariant, which suggests that the obtained reconstructions in mismodeled domains reflect conformal images of the true targets. The numerical experiments also confirm that a similar approach does not, in general, lead to a functional algorithm in three dimensions.

Original languageEnglish
Article number035006
JournalInverse Problems
Issue number3
Publication statusPublished - 7 Feb 2017
MoE publication typeA1 Journal article-refereed


  • complete electrode model
  • conformal invariance
  • electrical impedance tomography
  • electrode movement
  • geometric modeling errors
  • inaccurate measurement model

Fingerprint Dive into the research topics of 'Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography'. Together they form a unique fingerprint.

Cite this