TY - JOUR
T1 - Comparison of the iron-bearing crystals and phases from Tamdakht H5 and Annama H5 ordinary chondrites by X-ray diffraction, magnetization measurements and Mössbauer spectroscopy
AU - Goryunov, M. V.
AU - Petrova, E. V.
AU - Chukin, A. V.
AU - Maksimova, A. A.
AU - Varga, G.
AU - Dankházi, Z.
AU - Felner, I.
AU - Leitus, G.
AU - Gritsevich, M.
AU - Kuzmann, E.
AU - Homonnay, Z.
AU - Kohout, T.
AU - Oshtrakh, M. I.
N1 - Publisher Copyright:
© 2025 The Meteoritical Society.
PY - 2025
Y1 - 2025
N2 - The iron-bearing phases and crystals within (i) the bulk interior and the fusion crust from Tamdakht H5 and (ii) the bulk interior from Annama H5 ordinary chondrites were studied by optical microscopy, scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction (XRD), magnetization measurements, and Mössbauer spectroscopy. The main iron-bearing phases/crystals such as olivine, orthopyroxene, clinopyroxene, troilite, chromite, and hercynite, as well as Fe-Ni-Co alloy with the α2-Fe(Ni, Co), α-Fe(Ni, Co) and γ-Fe(Ni, Co) phases were identified in both meteorites. XRD and Mössbauer spectroscopy showed high contents of Fe-Ni-Co alloy in the bulk interiors from Tamdakht H5 and Annama H5 ordinary chondrites. The fusion crust from Tamdakht H5 contains a new phase of magnesioferrite. A classification scheme for H, L, and LL ordinary chondrites using the relative areas of Mössbauer spectral components was applied to these meteorites' classification. The ratios of the M1 and M2 site occupations by Fe2+ in olivine and orthopyroxene were determined using XRD and Mössbauer spectroscopy, showing consistent results. The equilibrium cation distribution temperatures for olivine and orthopyroxene in Tamdakht H5 and Annama H5 were determined using XRD and Mössbauer spectroscopy.
AB - The iron-bearing phases and crystals within (i) the bulk interior and the fusion crust from Tamdakht H5 and (ii) the bulk interior from Annama H5 ordinary chondrites were studied by optical microscopy, scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction (XRD), magnetization measurements, and Mössbauer spectroscopy. The main iron-bearing phases/crystals such as olivine, orthopyroxene, clinopyroxene, troilite, chromite, and hercynite, as well as Fe-Ni-Co alloy with the α2-Fe(Ni, Co), α-Fe(Ni, Co) and γ-Fe(Ni, Co) phases were identified in both meteorites. XRD and Mössbauer spectroscopy showed high contents of Fe-Ni-Co alloy in the bulk interiors from Tamdakht H5 and Annama H5 ordinary chondrites. The fusion crust from Tamdakht H5 contains a new phase of magnesioferrite. A classification scheme for H, L, and LL ordinary chondrites using the relative areas of Mössbauer spectral components was applied to these meteorites' classification. The ratios of the M1 and M2 site occupations by Fe2+ in olivine and orthopyroxene were determined using XRD and Mössbauer spectroscopy, showing consistent results. The equilibrium cation distribution temperatures for olivine and orthopyroxene in Tamdakht H5 and Annama H5 were determined using XRD and Mössbauer spectroscopy.
UR - http://www.scopus.com/inward/record.url?scp=105006535098&partnerID=8YFLogxK
U2 - 10.1111/maps.14368
DO - 10.1111/maps.14368
M3 - Article
AN - SCOPUS:105006535098
SN - 1086-9379
JO - Meteoritics and Planetary Science
JF - Meteoritics and Planetary Science
ER -