Comparative Study on Heat Dissipation Performance of Pure Immersion and Immersion Jet Liquid Cooling System for Single Server

Linhui Yuan, Yu Wang*, Risto Kosonen, Zhengchao Yang, Yingying Zhang, Xincheng Wang

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

17 Downloads (Pure)

Abstract

Heat dissipation has emerged as a critical challenge in server cooling due to the escalating number of servers within data centers. The potential of immersion jet technology to be applied in large-scale data center server operations remains unexplored. This paper introduces an innovative immersion jet liquid cooling system. The primary objective is to investigate the synergistic integration of immersion liquid cooling and jet cooling to enhance the heat dissipation capacity of server liquid cooling systems. By constructing a single-server liquid cooling test bench, this study compares the heat dissipation efficiencies of pure immersion and immersion jet liquid cooling systems and examines the impact of inlet water temperature, jet distance, and inlet water flow rate on system performance. The experimental outcomes show that the steady-state surface heat transfer coefficient of the immersion jet liquid cooling system is 2.6 times that of the pure immersion system, with increases of approximately 475.9 W/(m2·K) and 1745.0 W/(m2·K) upon adjustment of the jet distance and flow rate, respectively. Furthermore, the system model is streamlined through dimensional analysis, yielding a dimensionless relationship that encompasses parameters such as inlet water temperature, jet distance, and inlet water velocity. The correlation error is maintained below 18%, thereby enhancing the comprehension of the immersion jet cooling mechanism.

Original languageEnglish
Article number2635
Number of pages18
JournalBuildings
Volume14
Issue number9
DOIs
Publication statusPublished - Sept 2024
MoE publication typeA1 Journal article-refereed

Keywords

  • data center
  • experiments
  • heat transfer coefficient
  • immersion jet
  • temperature difference

Fingerprint

Dive into the research topics of 'Comparative Study on Heat Dissipation Performance of Pure Immersion and Immersion Jet Liquid Cooling System for Single Server'. Together they form a unique fingerprint.

Cite this