Cold-crystallizing erythritol-polyelectrolyte: Scaling up reliable long-term heat storage material

Konsta Turunen, Maryam Roza Yazdani, Salla Puupponen, Annukka Santasalo-Aarnio, Ari Seppälä*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

27 Citations (Scopus)
199 Downloads (Pure)

Abstract

Renewable energy usage would benefit from efficient and high-capacity long-term heat storage material. However, these types of material solutions still lack reliable and durable operation on bulk level. Previously, we showed that cold-crystallizing material (CCM), which consists of erythritol in cross-linked polymer matrix, stored heat for a long-term period in a milligram scale by supercooling stably and preventing undesired crystallization during storage. Crystallization of CCM can be triggered efficiently by re-heating the material (i.e. cold-crystallization). Supercooling and cold-crystallization are stochastic phenomena which manifest in a way that the properties in bulk scale often deviate from the microscale. In this work, we scale up CCM to a bulk size of 160 g, and analyze its supercooling and crystallization characteristics for long-term heat storage. In order to identify the impact of the scale-up on the tested compositions and to discover optimal storage conditions, CCM samples are maintained in storage mode at constant temperature between 0 and 10 °C and up to 97 days. To this end, the thermal chamber measurement procedure estimates the heat release of CCM samples based on the measured temperature data and the one-dimensional transient heat conduction model. Results indicate that the heat release in cold-crystallization is over 70% of the melting heat. This heat can be stored without reduction for at least 97 days, demonstrating the reliable performance of long-term heat storage. Analysing the thermal properties of CCM compositions indicates a maximum volumetric storage capacity of 250 MJ/m3 and excellent properties for further heat storage applications.

Original languageEnglish
Article number114890
Number of pages12
JournalApplied Energy
Volume266
Early online date3 Apr 2020
DOIs
Publication statusPublished - 15 May 2020
MoE publication typeA1 Journal article-refereed

Keywords

  • Cold-crystallization
  • Erythritol
  • Long-term thermal energy storage
  • Phase change material
  • Supercooling

Fingerprint

Dive into the research topics of 'Cold-crystallizing erythritol-polyelectrolyte: Scaling up reliable long-term heat storage material'. Together they form a unique fingerprint.

Cite this