Charge transport mechanisms in macro-scale CNT films

E. S. Zhukova*, B. P. Gorshunov, A. P. Tsapenko, A. K. Grebenko, A. V. Bubis, S. S. Zhukov, E. A. Simchuk, V. I. Tsebro, A. A. Tonkikh, D. V. Rybkovskiy, E. I. Kauppinen, A. G. Nasibulin, E. D. Obraztsova

*Corresponding author for this work

Research output: Contribution to journalConference articleScientificpeer-review

3 Citations (Scopus)
185 Downloads (Pure)

Abstract

Carbon nanotubes (CNT) attract considerable attention due to their unique physical properties and potential application in optoelectronics. Despite of intensive studies there is still a lack of agreement in experimental data on electrical properties of the material. Here we report on extremely broad-band conductivity and dielectric permittivity spectra of macro-scale thin films composed of large number of randomly distributed pristine and p-doped CNTs of different length, measured in the frequency range 5-24 000 cm-1 and at temperatures from 5 to 300 K. We show that terahertz-infrared spectra of the films are determined by response of delocalized charge carriers. Controversially to the existing experimental results we did not clearly observe the so-called terahertz conductivity peak. Yet, a weak bump-like feature in conductivity spectra around 30 cm-1 showed no signs of tube length dependence. We associate its origin with plasmonic excitation due to reflections of charge carrier plasma at the CNT intersections. Applying the Drude-model to describe the low frequency conductivity and dielectric permittivity spectra of CNT films we obtained effective values of carries parameters. Our results can shed light on electromagnetic waves absorption mechanisms and will be useful while designing new CNT-based devices.

Original languageEnglish
Article number012178
Pages (from-to)1-5
JournalJournal of Physics: Conference Series
Volume1092
DOIs
Publication statusPublished - 1 Jan 2018
MoE publication typeA4 Article in a conference publication
EventInternational Conference on Metamaterials and Nanophotonics - Sochi, Russian Federation
Duration: 17 Sep 201821 Sep 2018
Conference number: 3

Fingerprint

Dive into the research topics of 'Charge transport mechanisms in macro-scale CNT films'. Together they form a unique fingerprint.

Cite this