Characterization of a unique Caulobacter crescentus aldose-aldose oxidoreductase having dual activities

Martina Andberg*, Hannu Maaheimo, Esa-Pekka Kumpula, Harry Boer, Mervi Toivari, Merja Penttilä, Anu Koivula

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)


We describe here the characterization of a novel enzyme called aldose-aldose oxidoreductase (Cc AAOR; EC 1.1.99) from Caulobacter crescentus. The Cc AAOR exists in solution as a dimer, belongs to the Gfo/Idh/MocA family and shows homology with the glucose-fructose oxidoreductase from Zymomonas mobilis. However, unlike other known members of this protein family, Cc AAOR is specific for aldose sugars and can be in the same catalytic cycle both oxidise and reduce a panel of monosaccharides at the C1 position, producing in each case the corresponding aldonolactone and alditol, respectively. Cc AAOR contains a tightly-bound nicotinamide cofactor, which is regenerated in this oxidation-reduction cycle. The highest oxidation activity was detected on d-glucose but significant activity was also observed on d-xylose, l-arabinose and d-galactose, revealing that both hexose and pentose sugars are accepted as substrates by Cc AAOR. The configuration at the C2 and C3 positions of the saccharides was shown to be especially important for the substrate binding. Interestingly, besides monosaccharides, Cc AAOR can also oxidise a range of 1,4-linked oligosaccharides having aldose unit at the reducing end, such as lactose, malto- and cello-oligosaccharides as well as xylotetraose. H-1 NMR used to monitor the oxidation and reduction reaction simultaneously, demonstrated that although d-glucose has the highest affinity and is also oxidised most efficiently by Cc AAOR, the reduction of d-glucose is clearly not as efficient. For the overall reaction catalysed by Cc AAOR, the l-arabinose, d-xylose and d-galactose were the most potent substrates.

Original languageEnglish
Pages (from-to)673-685
Number of pages13
JournalApplied Microbiology and Biotechnology
Issue number2
Publication statusPublished - Jan 2016
MoE publication typeA1 Journal article-refereed


  • Enzyme catalysis
  • Glucose-fructose
  • oxidoreductase
  • Nuclear magnetic resonance
  • Tightly-bound cofactor
  • Carbohydrate


Dive into the research topics of 'Characterization of a unique Caulobacter crescentus aldose-aldose oxidoreductase having dual activities'. Together they form a unique fingerprint.

Cite this