Projects per year
Abstract
Current black-box variational inference (BBVI) methods require the user to make numerous design choices—such as the selection of variational objective and approximating family—yet there is little principled guidance on how to do so. We develop a conceptual framework and set of experimental tools to understand the effects of these choices, which we leverage to propose best practices for maximizing posterior approximation accuracy. Our approach is based on studying the pre-asymptotic tail behavior of the density ratios between the joint distribution and the variational approximation, then exploiting insights and tools from the importance sampling literature. Our framework and supporting experiments help to distinguish between the behavior of BBVI methods for approximating low-dimensional versus moderate-to-high-dimensional posteriors. In the latter case, we show that mass-covering variational objectives are difficult to optimize and do not improve accuracy, but flexible variational families can improve accuracy and the effectiveness of importance sampling—at the cost of additional optimization challenges. Therefore, for moderate-to-high-dimensional posteriors we recommend using the (mode-seeking) exclusive KL divergence since it is the easiest to optimize, and improving the variational family or using model parameter transformations to make the posterior and optimal variational approximation more similar. On the other hand, in low-dimensional settings, we show that heavy-tailed variational families and mass-covering divergences are effective and can increase the chances that the approximation can be improved by importance sampling.
Original language | English |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021 |
Editors | Marc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan |
Publisher | Neural Information Processing Systems Foundation |
Pages | 7787-7798 |
Number of pages | 12 |
ISBN (Electronic) | 9781713845393 |
Publication status | Published - 2021 |
MoE publication type | A4 Conference publication |
Event | Conference on Neural Information Processing Systems - Virtual, Online Duration: 6 Dec 2021 → 14 Dec 2021 Conference number: 35 https://neurips.cc |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Publisher | Neural Information Processing Systems Foundation |
Volume | 34 |
ISSN (Print) | 1049-5258 |
Conference
Conference | Conference on Neural Information Processing Systems |
---|---|
Abbreviated title | NeurIPS |
City | Virtual, Online |
Period | 06/12/2021 → 14/12/2021 |
Internet address |
Fingerprint
Dive into the research topics of 'Challenges and Opportunities in High-dimensional Variational Inference'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Reliable Automated Bayesian Machine Learning
Vehtari, A. (Principal investigator)
01/01/2018 → 31/12/2019
Project: Academy of Finland: Other research funding
-
Computational methods for survival analysis
Vehtari, A. (Principal investigator)
01/09/2016 → 31/08/2020
Project: Academy of Finland: Other research funding