CFD modeling of the multiphase flow in an SKS furnace—The effect of melt density and viscosity

Kezhou Song, Ari Jokilaakso*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

10 Downloads (Pure)


A previously reported numerical method using the multi-fluid VOF model to simulate an SKS furnace multiphase flow was further verified to provide a good reference for the macroscopic flow field simulation of industrial vessels with similar geometry. Using the verified numerical model, CFD simulation of a full-scale SKS furnace multiphase flow was conducted, targeting the agitation performance with different melt densities and viscosities, under constant furnace operating conditions. According to this simulation, the melt density and viscosity in a common applied range in industry is not able to significantly affect the bath agitation efficiency like other parameters, such as the tuyere diameter and bath depth. More specifically, the results indicate that an increased melt density or viscosity slightly weakens the melt flow motion, and increases the wall shear stress. Since variation in melt density and viscosity is common in industry, the results from this simulation offer a good basis for the estimation of SKS furnace operating performance and the adjustment of the physical properties of the melt in SKS furnaces or other similar industrial vessels.

Original languageEnglish
Article number100496
Number of pages9
JournalChemical Engineering Journal Advances
Early online date21 Apr 2023
Publication statusPublished - 15 May 2023
MoE publication typeA1 Journal article-refereed


Dive into the research topics of 'CFD modeling of the multiphase flow in an SKS furnace—The effect of melt density and viscosity'. Together they form a unique fingerprint.

Cite this