Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy

Research output: Contribution to journalArticleScientificpeer-review

Researchers

  • Aday J. Molina-Mendoza
  • Jose Lado

  • Joshua O. Island
  • Miguel Angel Niño
  • Lucía Aballe
  • Michael Foerster
  • Flavio Y. Bruno
  • Alejandro López-Moreno
  • Luis Vaquero-Garzon
  • Herre S.J. Van Der Zant
  • Gabino Rubio-Bollinger
  • Nicolás Agraït
  • Emilio M. Pérez
  • Joaquín Fernández-Rossier
  • Andres Castellanos-Gomez

Research units

  • Ramón y Cajal University Hospital
  • International Iberian Nanotechnology Laboratory
  • Kavli Institute of Nanoscience Delft
  • IMDEA Institute
  • Autonomous University of Barcelona
  • University of Geneva
  • Universidad Autónoma de Madrid

Abstract

We report on the large-scale synthesis of highly oriented ultrathin MoO3 layers using a simple and low-cost atmospheric pressure, van der Waals epitaxy growth on muscovite mica substrates. By this method, we are able to synthesize high quality centimeter-scale MoO3 crystals with thicknesses ranging from 1.4 nm (two layers) up to a few nanometers. The crystals can be easily transferred to an arbitrary substrate (such as SiO2) by a deterministic transfer method and be extensively characterized to demonstrate the high quality of the resulting crystal. We also study the electronic band structure of the material by density functional calculations. Interestingly, the calculations demonstrate that bulk MoO3 has a rather weak electronic interlayer interaction, and thus, it presents a monolayer-like band structure. Finally, we demonstrate the potential of this synthesis method for optoelectronic applications by fabricating large-area field-effect devices (10 μm × 110 μm in lateral dimensions) and find responsivities of 30 mA W-1 for a laser power density of 13 mW cm-2 in the UV region of the spectrum and also as an electron acceptor in a MoS2-based field-effect transistor.

Details

Original languageEnglish
Pages (from-to)4042-4051
Number of pages10
JournalChemistry of Materials
Volume28
Issue number11
Publication statusPublished - 14 Jun 2016
MoE publication typeA1 Journal article-refereed

ID: 36719923