Cavitation on Model- and Full-Scale Marine Propellers : Steady And Transient Viscous Flow Simulations At Different Reynolds Numbers

Ville Viitanen*, Timo Siikonen, Antonio Sanchez-Caja

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

6 Citations (Scopus)
118 Downloads (Pure)


In this paper, we conducted numerical simulations to investigate single and two-phase flows around marine propellers in open-water conditions at different Reynolds number regimes. The simulations were carried out using a homogeneous compressible two-phase flow model with RANS and hybrid RANS/LES turbulence modeling approaches. Transition was accounted for in the model-scale simulations by employing an LCTM transition model. In model scale, also an anisotropic RANS model was utilized. We investigated two types of marine propellers: a conventional and a tip-loaded one. We compared the results of the simulations to experimental results in terms of global propeller performance and cavitation observations. The propeller cavitation, near-blade flow phenomena, and propeller wake flow characteristics were investigated in model- and full-scale conditions. A grid and time step sensitivity studies were carried out with respect to the propeller performance and cavitation characteristics. The model-scale propeller performance and the cavitation patterns were captured well with the numerical simulations, with little difference between the utilized turbulence models. The global propeller performance and the cavitation patterns were similar between the model- and full-scale simulations. A tendency of increased cavitation extent was observed as the Reynolds number increases. At the same time, greater dissipation of the cavitating tip vortex was noted in the full-scale conditions.

Original languageEnglish
Article number141
Number of pages33
JournalJournal of Marine Science and Engineering
Issue number2
Publication statusPublished - 1 Feb 2020
MoE publication typeA1 Journal article-refereed


  • marine propeller
  • CFD
  • cavitation simulation
  • turbulence modeling
  • scale effects

Cite this