Projects per year
Abstract
A treatment policy defines when and what treatments are applied to affect some outcome of interest. Data-driven decision-making requires the ability to predict what happens if a policy is changed. Existing methods that predict how the outcome evolves under different scenarios assume that the tentative sequences of future treatments are fixed in advance, while in practice the treatments are determined stochastically by a policy and may depend, for example, on the efficiency of previous treatments. Therefore, the current methods are not applicable if the treatment policy is unknown or a counterfactual analysis is needed. To handle these limitations, we model the treatments and outcomes jointly in continuous time, by combining Gaussian processes and point processes. Our model enables the estimation of a treatment policy from observational sequences of treatments and outcomes, and it can predict the interventional and counterfactual progression of the outcome after an intervention on the treatment policy (in contrast with the causal effect of a single treatment). We show with real-world and semi-synthetic data on blood glucose progression that our method can answer causal queries more accurately than existing alternatives.
Original language | English |
---|---|
Title of host publication | Proceedings of the 40th International Conference on Machine Learning |
Editors | Andread Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, Jonathan Scarlett |
Publisher | JMLR |
Pages | 13050-13084 |
Number of pages | 35 |
Publication status | Published - Jul 2023 |
MoE publication type | A4 Conference publication |
Event | International Conference on Machine Learning - Honolulu, United States Duration: 23 Jul 2023 → 29 Jul 2023 Conference number: 40 |
Publication series
Name | Proceedings of Machine Learning Research |
---|---|
Publisher | PMLR |
Volume | 202 |
ISSN (Electronic) | 2640-3498 |
Conference
Conference | International Conference on Machine Learning |
---|---|
Abbreviated title | ICML |
Country/Territory | United States |
City | Honolulu |
Period | 23/07/2023 → 29/07/2023 |
Fingerprint
Dive into the research topics of 'Causal Modeling of Policy Interventions From Treatment-Outcome Sequences'. Together they form a unique fingerprint.-
CLISHEAT/Marttinen: Green and digital healthcare
Marttinen, P., Gao, Y. & John, T.
01/01/2023 → 31/12/2025
Project: Academy of Finland: Other research funding
-
INTERVENE: International consortium for integrative genomics prediction
01/01/2021 → 31/12/2025
Project: EU: Framework programmes funding
-
DATALIT: Data Literacy for Responsible Decision-Making
Marttinen, P., Ji, S., Gröhn, T., Honkamaa, J., Kumar, Y., Pöllänen, A., Tiwari, P., Raj, V. & Ojala, F.
01/10/2020 → 30/09/2023
Project: Academy of Finland: Strategic research funding