Carbon Nanotubes versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells

Research output: Contribution to journalArticleScientificpeer-review

Researchers

  • Il Jeon
  • Jungjin Yoon
  • Namyoung Ahn
  • Mohamed Atwa
  • Clement Delacou
  • Anton Anisimov
  • Esko Kauppinen

  • Mansoo Choi
  • Shigeo Maruyama
  • Yutaka Matsuo

Research units

  • University of Tokyo
  • Seoul National University
  • Canatu Ltd.
  • National Institute of Advanced Industrial Science and Technology
  • University of Science and Technology of China

Abstract

Transparent carbon electrodes, carbon nanotubes, and graphene were used as the bottom electrode in flexible inverted perovskite solar cells. Their photovoltaic performance and mechanical resilience were compared and analyzed using various techniques. Whereas a conventional inverted perovskite solar cells using indium tin oxide showed a power conversion efficiency of 17.8%, the carbon nanotube- and graphene-based cells showed efficiencies of 12.8% and 14.2%, respectively. An established MoO3 doping was used for carbon electrode-based devices. The difference in the photovoltaic performance between the carbon nanotube- and graphene-based cells was due to the difference in morphology and transmittance. Raman spectroscopy, and cyclic flexural testing revealed that the graphene-based cells were more susceptible to strain than the carbon nanotube-based cells, though the difference was marginal. Overall, despite higher performance, the transfer step for graphene has lower reproducibility. Thus, the development of better graphene transfer methods would help maximize the current capacity of graphene-based cells.

Details

Original languageEnglish
Pages (from-to)5395-5401
Number of pages7
JournalJournal of Physical Chemistry Letters
Volume8
Issue number21
Publication statusPublished - 2 Nov 2017
MoE publication typeA1 Journal article-refereed

ID: 16138798