Capillary self-alignment of microchips on soft substrates
Research output: Contribution to journal › Article › Scientific › peer-review
Researchers
Research units
- Uppsala University
- Huazhong University of Science and Technology
Abstract
Soft micro devices and stretchable electronics have attracted great interest for their potential applications in sensory skins and wearable bio-integrated devices. One of the most important steps in building printed circuits is the alignment of assembled micro objects. Previously, the capillary self-alignment of microchips driven by surface tension effects has been shown to be able to achieve high-throughput and high-precision in the integration of micro parts on rigid hydrophilic/superhydrophobic patterned surfaces. In this paper, the self-alignment of microchips on a patterned soft and stretchable substrate, which consists of hydrophilic pads surrounded by a superhydrophobic polydimethylsiloxane (PDMS) background, is demonstrated for the first time. A simple process has been developed for making superhydrophobic soft surface by replicating nanostructures of black silicon onto a PDMS surface. Different kinds of PDMS have been investigated, and the parameters for fabricating superhydrophobic PDMS have been optimized. A self-alignment strategy has been proposed that can result in reliable self-alignment on a soft PDMS substrate. Our results show that capillary self-alignment has great potential for building soft printed circuits.
Details
Original language | English |
---|---|
Article number | 41 |
Pages (from-to) | 1-9 |
Journal | MICROMACHINES |
Volume | 7 |
Issue number | 3 |
Publication status | Published - 1 Mar 2016 |
MoE publication type | A1 Journal article-refereed |
- Capillary self-alignment, Hydrophilic/superhydrophobic patterned surfaces, Soft micro devices, Stretchable electronics, Superhydrophobic PDMS
Research areas
Download statistics
ID: 3052198