Broadband Lamb shift in an engineered quantum system

Research output: Contribution to journalArticleScientificpeer-review

Researchers

Research units

  • Tokyo Medical and Dental University
  • Helsinki School of Economics
  • RWTH Aachen University
  • National Institute of Standards and Technology
  • VTT Technical Research Centre of Finland

Abstract

The shift of the energy levels of a quantum system owing to broadband electromagnetic vacuum fluctuations—the Lamb shift—has been central for the development of quantum electrodynamics and for the understanding of atomic spectra 1–6 . Identifying the origin of small energy shifts is still important for engineered quantum systems, in light of the extreme precision required for applications such as quantum computing 7,8 . However, it is challenging to resolve the Lamb shift in its original broadband case in the absence of a tuneable environment. Consequently, previous observations 1–5 , 9 in non-atomic systems are limited to environments comprising narrowband modes 10–12 . Here, we observe a broadband Lamb shift in high-quality superconducting resonators, a scenario also accessing static shifts inaccessible in Lamb’s experiment 1,2 . We measure a continuous change of several megahertz in the fundamental resonator frequency by externally tuning the coupling strength to the engineered broadband environment, which is based on hybrid normal-metal–insulator–superconductor tunnel junctions 13–15 . Our results may lead to improved control of dissipation in high-quality engineered quantum systems and open new possibilities for studying synthetic open quantum matter 16–18 using this hybrid experimental platform.

Details

Original languageEnglish
Number of pages8
JournalNature Physics
Volume15
Issue number6
Publication statusPublished - Jun 2019
MoE publication typeA1 Journal article-refereed

Download statistics

No data available

ID: 32810950