Brightest group galaxies: stellar mass and star formation rate (paper I)

Ghassem Gozaliasl, Alexis Finoguenov, Habib G. Khosroshahi, Mohammad Mirkazemi, Ghazaleh Erfanianfar, Masayuki Tanaka

Research output: Contribution to journalArticleScientificpeer-review

Abstract

We study the distribution and evolution of the stellar mass and the star formation rate (SFR) of the brightest group galaxies (BGGs) over 0.04 < z < 1.3 using a large sample of 407 X-ray galaxy groups selected from the COSMOS, AEGIS, and XMM-LSS fields. We compare our results with predictions from the semi-analytic models based on the Millennium simulation. In contrast to model predictions, we find that, as the Universe evolves, the stellar mass distribution evolves towards a normal distribution. This distribution tends to skew to low-mass BGGs at all redshifts implying the presence of a star-forming population of the BGGs with MS ∼ 1010.5 M⊙ which results in the shape of the stellar mass distribution deviating from a normal distribution. In agreement with the models and previous studies, we find that the mean stellar mass of BGGs grows with time by a factor of ∼2 between z = 1.3 and z = 0.1, however, the significant growth occurs above z = 0.4. The BGGs are not entirely a dormant population of galaxies, as low-mass BGGs in low-mass haloes are more active in forming stars than the BGGs in more massive haloes, over the same redshift range. We find that the average SFR of the BGGs evolves steeply with redshift and fraction of the passive BGGs increases as a function of increasing stellar mass and halo mass. Finally, we show that the specific SFR of the BGGs within haloes with M200 ≤ 1013.4 M⊙ decreases with increasing halo mass at z < 0.4.
Original languageEnglish
Pages (from-to)2762-2775
JournalMonthly Notices of the Royal Astronomical Society
Volume458
Issue number3
DOIs
Publication statusPublished - 1 May 2016
MoE publication typeA1 Journal article-refereed

Keywords

  • galaxies: clusters: general
  • galaxies: elliptical and lenticular
  • cD
  • galaxies: evolution
  • galaxies: groups: general
  • galaxies: haloes
  • galaxies: star formation

Fingerprint

Dive into the research topics of 'Brightest group galaxies: stellar mass and star formation rate (paper I)'. Together they form a unique fingerprint.

Cite this