Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements

Pezhman Mohammadi*, A. Sesilja Aranko, Christopher P. Landowski, Olli Ikkala, Kristaps Jaudzems, Wolfgang Wagermaier, Markus B. Linder

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

49 Citations (Scopus)
183 Downloads (Pure)

Abstract

Silk and cellulose are biopolymers that show strong potential as future sustainable materials. They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. A major challenge concerns balancing structure and functional properties in the assembly process. We used recombinant proteins with triblock architecture, combining structurally modified spider silk with terminal cellulose affinity modules. Flow alignment of cellulose nanofibrils and triblock protein allowed continuous fiber production. Protein assembly involved phase separation into concentrated coacervates, with subsequent conformational switching from disordered structures into b sheets. This process gave the matrix a tough adhesiveness, forming a new composite material with high strength and stiffness combined with increased toughness. We show that versatile design possibilities in protein engineering enable new fully biological materials and emphasize the key role of controlled assembly at multiple length scales for realization.

Original languageEnglish
Article numbereaaw2541
JournalScience Advances
Volume5
Issue number9
DOIs
Publication statusPublished - 13 Sept 2019
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements'. Together they form a unique fingerprint.

Cite this