Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment

I. Kylänpää, Hannu-Pekka Komsa

Research output: Contribution to journalArticleScientificpeer-review

230 Citations (Scopus)
436 Downloads (Pure)

Abstract

Excitons, trions, biexcitons, and exciton-trion complexes in two-dimensional transition metal dichalcogenide sheets of MoS2, MoSe2, MoTe2, WS2, and WSe2 are studied by means of density functional theory and path-integral Monte Carlo method in order to accurately account for the particle-particle correlations. In addition, the effect of dielectric environment on the properties of these exciton complexes is studied by modifying the effective interaction potential between particles. Calculated exciton and trion binding energies are consistent with previous experimental and computational studies, and larger systems such as biexciton and exciton-trion complex are found highly stable. Binding energies of biexcitons are similar to or higher than those of trions, but the binding energy of the trion depends significantly stronger on the dielectric environment than that of biexciton. Therefore, as a function of an increasing dielectric constant of the environment the exciton-trion complex “dissociates” to a biexciton rather than to an exciton and a trion.
Original languageEnglish
Article number205418
Pages (from-to)1-6
JournalPhysical Review B
Volume92
Issue number20
DOIs
Publication statusPublished - 2015
MoE publication typeA1 Journal article-refereed

Keywords

  • biexciton
  • DFT
  • quantum Monte Carlo
  • transition metal dichalcogenide

Fingerprint

Dive into the research topics of 'Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment'. Together they form a unique fingerprint.

Cite this